The file drawer problem refers to a researcher failing to publish studies that do not get significant results in support of the main hypothesis. There is little doubt that file-drawering has been endemic in psychology. A number of tools have been proposed to analyze excessive rates of significant publication and suspicious patterns of significance (summarized and referenced in this online calculator). All the same, people disagree about how seriously the file-drawer distorts conclusions in psychology (e.g. Fabrigar & Wegener in JESP, 2016, with comment by Francis and reply). To my mind the greater threat of file-drawering noncompliant studies is ethical. It simply looks bad, has little justification in an age of supplemental materials that shatter the page count barrier, and violates the spirit of the APA Ethics Code.
But I’ll bet that all of us who have been doing research for any time have a far larger file drawer composed of whole lines of research that simply did not deliver significant or consistent results. The ethics here are less clear. Is it OK to bury our dead? Where would we publish whole failed lines of research?
Of course, some research topics are interesting no matter how they come out. As I’ve argued elsewhere, focusing on questions like these would remove a lot of uncertainty from careers and undercut the careerist motivation for academic fraud. But would even the most extreme advocate of open science reform back a hard requirement for a completely transparent lab?
The lab-wise file drawer rate — if you will, the circular file drawer — could explain part or all of publication bias. Statistical power could lag behind the near-unanimous significance of reported results due to whole lines of research being file-drawered. The surviving lines of research, even if they openly report all studies run, would then look better than chance would have it. I ran some admittedly simplistic simulations (Google Drive spreadsheet) to check out how serious the circular file drawer can get.

Our simulated lab has eight lines of research going on, testing independent hypotheses with multiple studies. Each study has 50% power to find a significant result given the match between its methods and the actual, population effect size out there. You may think this is low, but keep in mind that even if you build in 80 or 90% power to find, say, a medium sized effect, the actual effect may be small or practically nil, reducing your power post-hoc.
The lab also follows rules for conserving resources while conforming to the standard of evidence that many journals follow. For each idea, they run up to three studies. If two studies fail to get a significant result, they don’t publish the research. They also stop the research short if either they fail to replicate a promising first study, or they try two studies, both of which fail. In this 50% power lab where each study’s success is a coin flip, this means that out of eight lines of research, they will only end up trying to publish three. Sounds familiar?
Remember, all these examples assume that the lab reports even non-significant studies from lines of research that “succeed” by this standard. There is no topic-wise file drawer — only a lab-wise one.
In our example lab that runs at a consistent 50% power, at the spreadsheet’s top left, the results of this practice look pretty eye-opening. Even though not all reported results are significant, the 77.8% that are significant still exceed the 50% power of the studies. This leads to an R-index of 22, which has been described as a typical result when reporting bias is applied to a nonexistent effect (Schimmack, 2016).
Following the spreadsheet down, we see minimal effects of adopting slightly different rules that are more or less conservative in abandoning a research line after failure. They only require one study more or less about every 4 topics, and the R-indices from these analyses are still problematic.
Following the spreadsheet to the right, we see stronger benefits of carrying out more strongly powered research — which includes studying effects that are more strongly represented in the population to begin with. At 80% power, most research lines yield three significant studies, and the R-index becomes a healthy 71.
The next block to the right assumes only 5% power – a figure that breaks the assumptions of the R index. This represents a lab that is going after an effect that doesn’t exist, so tests will only be significant at the 5% type I error rate. Each of the research rules is very effective in limiting exposure to completely false conclusions, with only one in hundreds of false hypotheses making it to publication.
Before drawing too many conclusions about the 50% power example, however, it is important to question one of its assumptions. If all studies run in a lab have a uniform 50% power, and use similar methods, then all the hypotheses are true, with the same population effect size. Thus, variability in the significance of studies cannot reflect (nonexistent) variability in the truth value of hypotheses.
To reflect reality more closely, we need a model like the one I present at the very far right. A lab uses similar methods across the board to study a variety of hypotheses: 1/3 hypotheses with strong population support (so their standard method yields 80% power), 1/3 with weaker population support (so, 50% power), and 1/3 hypotheses that are just not true at all (so, 5% power). This gives the lab’s publication choices a chance to represent meaningful differences in reality, not just random variance in sampling.
What happens here?
This lab, as expected, flushes out almost all of its tests of nonexistent effects, and finds relatively more success with research lines that have high power based on a strong effect, versus low power based on a weaker effect. As a result, inflation of published findings is still appreciable, but less problematic than if each study is done at a uniform 50% power.
To sum up:
- A typical lab might expect to have its published results show inflation above their power levels even if it commits to reporting all studies relevant to each separate topic it publishes on.
- This is because of sampling randomness in which topics are “survivors.” The more a lab can reduce this random factor — by running high-powered research, for example — the less lab-wise selection creates inflation in reported results.
- A lab’s file drawer creates the most inflation when it tries to create uniform conditions of low power — for example, trying to economize by studying strong effects using weak methods and weak effects using strong methods, so that a uniform post-hoc power of 50% is reached (as in the first example). It may be better to let weakly supported hypotheses wither away (as in the hybrid lab example).
And three additional observations:
- These problems vanish in a world where all results are publishable because research is done and evaluated in a way that reflects confidence in even null results (for example, the world of reviewed pre-registration). Psychology is a long way from that world, though.
- The labwise file drawer adds another degree of uncertainty when trying to use post-hoc credibility analyses to assess the existence and extent of publication bias. Some of that publication bias may come from the published topic being simply more lucky than other topics in the lab.
- If people are going to disagree on the implications, a lot of it will hinge on whether it is ethical to not report failed lines of research. Those who think it’s OK will see a further reason not to condemn existing research, because part of the inflation used as evidence for publication bias could be due to this OK practice. Those who think it’s not OK will press for even more complete reporting requirements, bringing lab psychology more in line with practices in other lab sciences (see illustration).
Being trusted is a privilege.
“Remember, all these examples assume that the lab reports even non-significant studies from lines of research that “succeed” by this standard. There is no topic-wise file drawer — only a lab-wise one.”
I can not recall ever having read an article that has no introduction with references to previous lines of work that somehow build a case for these new studies. If this is representative of the real world of publishing, i reason that these new studies can mostly be considered to be a part of an existing literature, set of findings, or topics.
If this makes any sense, i reason that not publishing non-significant results always has an effect on the topic-wise filedrawer. In other words, i don’t think a meaningful difference between a topic-wise filedrawer and a lab-wise filedrawer can be constructed in the context of publication bias.